17 resultados para Intelligent Control

em Universitat de Girona, Spain


Relevância:

70.00% 70.00%

Publicador:

Resumo:

L’estudi que es realitza en aquest projecte/treball final de carrera queda englobat dins del grup de recerca MICE (Modal Intervals Control and Engeneering), el qual realitza investigacions entorn al control de glucèmia. Aquest grup de recerca vinculat a la Universitat de Girona col•labora amb l’Hospital Universitari Dr. Josep Trueta de Girona. La temàtica principal tractarà de realitzar el control de glucèmia en pacients crítics, que es troben ingressats en la unitat de cures intensives de qualsevol hospital. Com a conseqüència d’aquesta problemàtica, s’ha implementat en un entorn virtual, un pacient el qual simula la situació d’un pacient real en la unitat de cures intensives. El model emprat per a la obtenció del model de pacient virtual és el desenvolupat per Chase et al. (2005), el qual mitjançant variables com l’alimentació enteral i la sensibilitat insulínica, es podien realitzar assajos reals per a validar protocols de control ‘in silico’ per posteriorment realitzar assajos amb població real

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper deals with the problem of identification and semiactive control of smart structures subject to unknown external disturbances such as earthquake, wind, etc. The experimental setup used is a 6-story test structure equipped with shear-mode semiactive magnetorheological actuators being installed in WUSCEEL. The experimental results obtained have verified the effectiveness of the proposed control algorithms

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper deals with the problem of semiactive vibration control of civil engineering structures subject to unknown external disturbances (for example, earthquakes, winds, etc.). Two kinds of semiactive controllers are proposed based on the backstepping control technique. The experimental setup used is a 6-story test structure equipped with shear-mode semiactive magnetorheological dampers being installed in the Washington University Structural Control and Earthquake Engineering Laboratory (WUSCEEL). The experimental results obtained have verified the effectiveness of the proposed control algorithms

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper discusses predictive motion control of a MiRoSoT robot. The dynamic model of the robot is deduced by taking into account the whole process - robot, vision, control and transmission systems. Based on the obtained dynamic model, an integrated predictive control algorithm is proposed to position precisely with either stationary or moving obstacle avoidance. This objective is achieved automatically by introducing distant constraints into the open-loop optimization of control inputs. Simulation results demonstrate the feasibility of such control strategy for the deduced dynamic model

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introspecció sobre la dinàmica dels agents té un important impacte en decisions individuals i cooperatives en entorns multi-agent. Introspecció, una habilitat cognitiva provinent de la metàfora "agent", permet que els agents siguin conscients de les seves capacitats per a realitzar correctament les tasques. Aquesta introspecció, principalment sobre capacitats relacionades amb la dinàmica, proporciona als agents un raonament adequat per a assolir compromisos segurs en sistemes cooperatius. Per a tal fi, les capacitats garanteixen una representació adequada i explícita de tal dinàmica. Aquest enfocament canvia i millora la manera com els agents poden coordinar-se per a portar a terme tasques i com gestionar les seves interaccions i compromisos en entorns cooperatius. L'enfocament s'ha comprovat en escenaris on la coordinació és important, beneficiosa i necessària. Els resultats i les conclusions són presentats ressaltant els avantatges de la introspecció en la millora del rendiment dels sistemes multi-agent en tasques coordinades i assignació de tasques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we present a novel approach to assigning roles to robots in a team of physical heterogeneous robots. Its members compete for these roles and get rewards for them. The rewards are used to determine each agent’s preferences and which agents are better adapted to the environment. These aspects are included in the decision making process. Agent interactions are modelled using the concept of an ecosystem in which each robot is a species, resulting in emergent behaviour of the whole set of agents. One of the most important features of this approach is its high adaptability. Unlike some other learning techniques, this approach does not need to start a whole exploitation process when the environment changes. All this is exemplified by means of experiments run on a simulator. In addition, the algorithm developed was applied as applied to several teams of robots in order to analyse the impact of heterogeneity in these systems

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A long development time is needed from the design to the implementation of an AUV. During the first steps, simulation plays an important role, since it allows for the development of preliminary versions of the control system to be integrated. Once the robot is ready, the control systems are implemented, tuned and tested. The use of a real-time simulator can help closing the gap between off-line simulation and real testing using the already implemented robot. When properly interfaced with the robot hardware, a real-time graphical simulation with a "hardware in the loop" configuration, can allow for the testing of the implemented control system running in the actual robot hardware. Hence, the development time is drastically reduced. These paper overviews the field of graphical simulators used for AUV development proposing a classification. It also presents NEPTUNE, a multi-vehicle, real-time, graphical simulator based on OpenGL that allows hardware in the loop simulations

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Expert supervision systems are software applications specially designed to automate process monitoring. The goal is to reduce the dependency on human operators to assure the correct operation of a process including faulty situations. Construction of this kind of application involves an important task of design and development in order to represent and to manipulate process data and behaviour at different degrees of abstraction for interfacing with data acquisition systems connected to the process. This is an open problem that becomes more complex with the number of variables, parameters and relations to account for the complexity of the process. Multiple specialised modules tuned to solve simpler tasks that operate under a co-ordination provide a solution. A modular architecture based on concepts of software agents, taking advantage of the integration of diverse knowledge-based techniques, is proposed for this purpose. The components (software agents, communication mechanisms and perception/action mechanisms) are based on ICa (Intelligent Control architecture), software middleware supporting the build-up of applications with software agent features

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main objective of this paper aims at developing a methodology that takes into account the human factor extracted from the data base used by the recommender systems, and which allow to resolve the specific problems of prediction and recommendation. In this work, we propose to extract the user's human values scale from the data base of the users, to improve their suitability in open environments, such as the recommender systems. For this purpose, the methodology is applied with the data of the user after interacting with the system. The methodology is exemplified with a case study

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper introduces how artificial intelligence technologies can be integrated into a known computer aided control system design (CACSD) framework, Matlab/Simulink, using an object oriented approach. The aim is to build a framework to aid supervisory systems analysis, design and implementation. The idea is to take advantage of an existing CACSD framework, Matlab/Simulink, so that engineers can proceed: first to design a control system, and then to design a straightforward supervisory system of the control system in the same framework. Thus, expert systems and qualitative reasoning tools are incorporated into this popular CACSD framework to develop a computer aided supervisory system design (CASSD) framework. Object-variables an introduced into Matlab/Simulink for sharing information between tools

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a hybrid coordination method for behavior-based control architectures. The hybrid method takes advantages of the robustness and modularity in competitive approaches as well as optimized trajectories in cooperative ones. This paper shows the feasibility of applying this hybrid method with a 3D-navigation to an autonomous underwater vehicle (AUV). The behaviors are learnt online by means of reinforcement learning. A continuous Q-learning implemented with a feed-forward neural network is employed. Realistic simulations were carried out. The results obtained show the good performance of the hybrid method on behavior coordination as well as the convergence of the behaviors

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot. Although the dominant approach, when using RL, has been to apply value function based algorithms, the system here detailed is characterized by the use of direct policy search methods. Rather than approximating a value function, these methodologies approximate a policy using an independent function approximator with its own parameters, trying to maximize the future expected reward. The policy based algorithm presented in this paper is used for learning the internal state/action mapping of a behavior. In this preliminary work, we demonstrate its feasibility with simulated experiments using the underwater robot GARBI in a target reaching task

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a complete control architecture that has been designed to fulfill predefined missions with an autonomous underwater vehicle (AUV). The control architecture has three levels of control: mission level, task level and vehicle level. The novelty of the work resides in the mission level, which is built with a Petri network that defines the sequence of tasks that are executed depending on the unpredictable situations that may occur. The task control system is composed of a set of active behaviours and a coordinator that selects the most appropriate vehicle action at each moment. The paper focuses on the design of the mission controller and its interaction with the task controller. Simulations, inspired on an industrial underwater inspection of a dam grate, show the effectiveness of the control architecture

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper surveys control architectures proposed in the literature and describes a control architecture that is being developed for a semi-autonomous underwater vehicle for intervention missions (SAUVIM) at the University of Hawaii. Conceived as hybrid, this architecture has been organized in three layers: planning, control and execution. The mission is planned with a sequence of subgoals. Each subgoal has a related task supervisor responsible for arranging a set of pre-programmed task modules in order to achieve the subgoal. Task modules are the key concept of the architecture. They are the main building blocks and can be dynamically re-arranged by the task supervisor. In our architecture, deliberation takes place at the planning layer while reaction is dealt through the parallel execution of the task modules. Hence, the system presents both a hierarchical and an heterarchical decomposition, being able to show a predictable response while keeping rapid reactivity to the dynamic environment

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Not considered in the analytical model of the plant, uncertainties always dramatically decrease the performance of the fault detection task in the practice. To cope better with this prevalent problem, in this paper we develop a methodology using Modal Interval Analysis which takes into account those uncertainties in the plant model. A fault detection method is developed based on this model which is quite robust to uncertainty and results in no false alarm. As soon as a fault is detected, an ANFIS model is trained in online to capture the major behavior of the occurred fault which can be used for fault accommodation. The simulation results understandably demonstrate the capability of the proposed method for accomplishing both tasks appropriately